skip to main content


Search for: All records

Creators/Authors contains: "Wu, Tao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Forecasting all components in complex systems is an open and challenging task, possibly due to high dimensionality and undesirable predictors. We bridge this gap by proposing a data-driven and model-free framework, namely, feature-and-reconstructed manifold mapping (FRMM), which is a combination of feature embedding and delay embedding. For a high-dimensional dynamical system, FRMM finds its topologically equivalent manifolds with low dimensions from feature embedding and delay embedding and then sets the low-dimensional feature manifold as a generalized predictor to achieve predictions of all components. The substantial potential of FRMM is shown for both representative models and real-world data involving Indian monsoon, electroencephalogram (EEG) signals, foreign exchange market, and traffic speed in Los Angeles Country. FRMM overcomes the curse of dimensionality and finds a generalized predictor, and thus has potential for applications in many other real-world systems.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. ABSTRACT

    The quasi-two-dimensional kagome materials AV3Sb5 (A = K, Rb, Cs) were found to be a prime example of kagome superconductors, a new quantum platform to investigate the interplay between electron correlation effects, topology and geometric frustration. In this review, we report recent progress on the experimental and theoretical studies of AV3Sb5 and provide a broad picture of this fast-developing field in order to stimulate an expanded search for unconventional kagome superconductors. We review the electronic properties of AV3Sb5, the experimental measurements of the charge density wave state, evidence of time-reversal symmetry breaking and other potential hidden symmetry breaking in these materials. A variety of theoretical proposals and models that address the nature of the time-reversal symmetry breaking are discussed. Finally, we review the superconducting properties of AV3Sb5, especially the potential pairing symmetries and the interplay between superconductivity and the charge density wave state.

     
    more » « less
  3. Abstract In high-temperature ( T c ) cuprate superconductors, many exotic phenomena are rooted in the enigmatic pseudogap state, which has been interpreted as consisting of preformed Cooper pairs or competing orders or a combination thereof. Observation of pseudogap phenomenologically in electron-doped Sr 2 IrO 4 —the 5d electron counterpart of the cuprates, has spurred intense interest in the strontium iridates as a testbed for exploring the exotic physics of the cuprates. Here, we examine the pseudogap state of electron-doped Sr 2 IrO 4 by angle-resolved photoemission spectroscopy (ARPES) and parallel theoretical modeling. Our analysis demonstrates that the pseudogap state of Sr 2 IrO 4 appears without breaking the particle–hole symmetry or inducing spectral broadening which are telltale signatures of competing orders in the cuprates. We find quasiparticle dispersion and its temperature dependence in the pseudogap state of Sr 2 IrO 4 to point to an electronic order with a zero scattering wave vector and limited correlation length. Particle–hole symmetric preformed Cooper pairs are discussed as a viable mechanism for such an electronic order. The potential roles of incommensurate density waves are also discussed. 
    more » « less
  4. Zeolites (ZSM-5 and Beta) with different SiO2/Al2O3 ratios were synthesized as solid acids for hydrolyzing cellulose in an inorganic ionic liquid system (lithium bromide trihydrate solution, LBTH) under mild conditions. The results indicated that the texture properties of zeolite had little effect on catalytic activity, while acidity of zeolite was crucial to the cellulose hydrolysis. In the LBTH system, H-form zeolites released H+ into the solution from their acid sites via ion-exchange with Li+, which hydrolyzed the cellulose already dissolved. This unique homogeneous hydrolysis mechanism was the primary reason for the excellent performance of the zeolites in catalyzing cellulose hydrolysis in the LBTH system. It was found cellulose could be completely hydrolyzed to glucose and oligoglucan by 2% (w/w on cellulose) zeolite at 140 °C within 3 h with a single-pass glucose yield 61%. The zeolites could be recovered with 50% initial catalytic activity after regeneration and reused with stable catalytic activity. 
    more » « less
  5. null (Ed.)